OA-31

OA-31は、スマートフォンやモバイル機器向けのLTPSディスプレイ用ガラス基板として開発された低熱収縮ガラスです。熱処理によるガラスの収縮を従来品に対して大幅に低減しました。オーバーフロー製法による優れた面品位、板厚均一性も有しており、次世代ディスプレイ用の基板やフレキシブル有機ELディスプレイ用のキャリアとして最適なガラスです。

●特長

1. 低熱収縮率

LTPSプロセスなどの超高温プロセスにおいて、優れた熱寸法安定性を発揮します。

2. 高ヤング率

たわみにくく、変形しにくい板ガラスです。

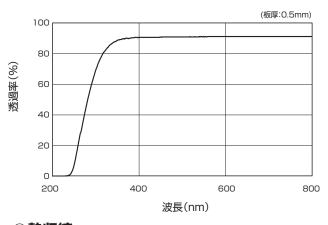
3. 優れた光学特性

高い透過率をもっています。

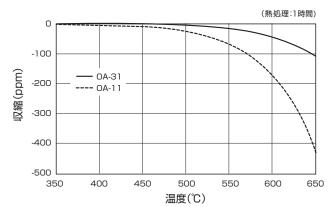
4. 優れた表面品位

オーバーフロー成形により、滑らかな表面を実現します。

5. 優れた板厚均一性


オーバーフロー成形により、非常に均一な板厚が可能です。

●特性


特性 / ガラスコード			OA-31
歪点		°C	750
ヤング率		GPa	83
密度		× 10 ³ kg/m ³	2.64
熱膨張係数	30~380℃	× 10 ⁻⁷ /K	39
ポアソン比			0.25
ビッカース硬度	Hv		680
体積抵抗率 Log p	350℃	$\Omega \cdot cm$	13.2
誘電率	1MHz,RT		5.9
tan σ	1MHz,RT		0.002
透過率	λ=550nm	%	91
屈折率 (n d)	587.6nm		1.53
耐薬品性	10%HCI(80°C -60min)		表面変質なし
	63BHF(20°C -3min)		表面変質なし
アルカリ酸化物含有量		wt%	0.1 以下
As、Sb含有率		wt%	非含有(0.1 未満)

●透過率曲線

●熱収縮

