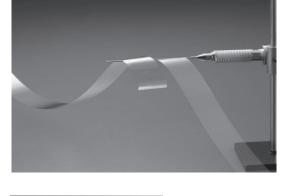
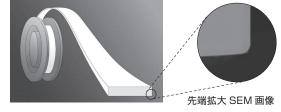
ガラスリボン

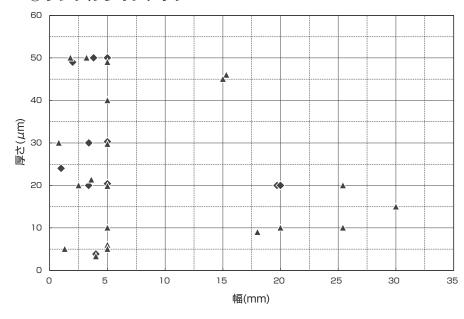

〈ガラスリボン〉は非常に薄いため、樹脂フィルムのように曲げたり、巻いたりすることが可能です。ガラス表面は無研磨にもかかわらず、非常に平滑です。この〈ガラスリボン〉の特長は、両側面の端部(両端)が右下写真のように丸みを帯びているため、曲げやねじりに強いことです。


●特長

●非常に薄い ●優れたフレキシビリティ ●化学的耐久性

●特性

ガラス材質		Α	D
熱膨張係数	× 10 ⁻⁷ /K	66	38
軟化点	\mathbb{C}	740	940
誘電率 1MHz,25℃		6.5	5.3
屈折率(n _d)		1.51	1.52
ヤング率	GPa	77	73



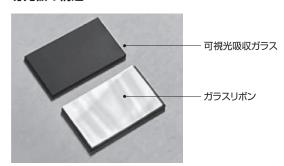
●寸法

厚さ	4μ m \sim 50μ m	
厚さ公差	厚さ 0.010mm 以上で、± 0.002mm	
	厚さ 0.010mm 未満で、± 0.001mm	
幅	0.5mm ~ 30mm	
幅公差	幅 10mm 以上で、± 0.5mm	
	幅 10mm 未満で、± 0.1mm	
対応可能アスペクト比(幅/厚さ)	2500以下	
長さ	100m以下	

ご要望に合わせて対応します。ご相談ください。

●サンプルラインアップ

◆ 材質A ▲ 材質D


●使用例

導光板

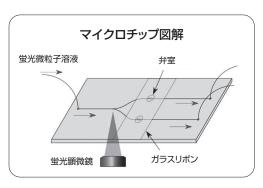
フォトンテックイノベーションズ株式会社が開発した光シート顕微鏡 光源(HandySPIM)の導光板としてガラスリボンが採用されています。 ガラスリボンの高精度な厚みが均一なシート光を作り出し、高解像度 な検体観察に貢献しています。

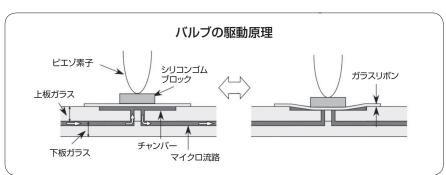
模式図 ガラスリボン 拡散・反射光は 可視光吸収ガラスで除去 カーなシート光 20μm (ガラスリボン厚) ガラスリボン導光板 可視光吸収ガラス

導光板の構造

ガラスリボンを可視光吸収ガラスで サンドイッチした構造

マウス小腸の撮像例





導光板なし 導光板あり

マイクロ流体チップ

独立行政法人理化学研究所が開発した「ガラス製マイクロ流体チップ」 にガラスリボンがバルブとして採用されています。4~6µm という極 薄で、繰り返しの折り曲げに耐えられるほど、柔軟性に優れたガラスリ ボンが、これまでになかったマイクロチップの実現に寄与しました。

特許権者:理化学研究所 特許:日本特許第6172711号、米国特許第9073054号

Reference: "Electric actuating valves incorporated into an all glass-based microchip exploiting the flexibility of ultra-thin glass"

Yo Tanaka RSC Advances, 3(26), 10213-10220 (2013)

画像提供:理化学研究所