Low Temperature Sealing Glass 1

Low temperature sealing glass is a composite material made by blending matrix powder glass with a low softening temperature and specially synthesized ceramic filler powder. The sealing temperature and coefficient of thermal expansion (CTE) of sealing glass can be adjusted by changing the kind and blending ratio of the glass and filler.

LS-2010 is widely used for DIP and QFP made of alumina (CTE: approximately 70×10^{-7} /K).

LS-1401S's low sealing temperature of 380°C makes it suitable for SMD packages for quartz oscillators.

LS-3051S is used for sealing low-expansion ceramics such as AIN (CTE: approximately 45 \times 10⁻⁷/K).

LS-1301 and BF-0901 are suitable for sealing silicon (CTE: approximately 35×10^{-7} /K).

Properties

Usage				Alumina		AIN, Mullite, Silicon		
Properties/Glass Code				LS-1401S	LS-2010	LS-3051S	LS-1301	BF-0901
Sealing temperature		°C	380	435	430	450	560	
Dielectric constant	1MHz, 25°C			45.0	12.5	16	45.5	11.1
tan δ	1MHz, 25°C		×10-4	38	34	41	60	19
Coefficient of thermal expa	al expansion 30-250°C		×10-7/K	71*1	65	51	41	49*2
Transformation point		°C	258	313	303	315	430	
Softening point			°C	355	400	390	390	528
Density		×10 ³ kg/m ³	7.02	5.67	5.95	6.77	4.69	
Volume resistivity Log ρ	ume resistivity Log ρ 150°C		Ω·cm	6.2	12.4	12.7	12.0	13.3
Thermal conductivity		W/m·K	0.98	1.45	1.24	0.84	1.47	
Specific heat		×10 ³ J/kg·K	0.34	0.41	0.38	0.35	0.46	
	20% H	2SO ₄ , 70°C, 1min	mg/cm ²	_	0.8	1.1	0.1	_
Acid durability	10% H ₂ SO ₄ , 20°C, 10min		mg/cm ²	_	0.5	0.9	0.1	_
Acid durability	10% HCl, 20°C, 10min		mg/cm ²	_	1.9	2.7	0.5	_
	10% H	NO ₃ , 20°C, 10min	mg/cm ²	_	120	120	123	_
Color			Black	Dark brown	Black	Black	Green	
Glass type			PbO·B ₂ O ₃ (COM)*3			Bi ₂ O ₃ ·B ₂ O ₃ (COM)* ³		

^{*1} This figure was measured at 30 to 200°C.

Please contact us about other types of Pb-free glass.

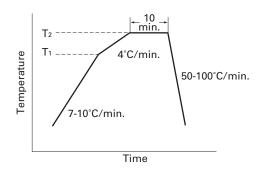
^{*2} This figure was measured at 30 to 300°C.

^{*3} COM: Composite sealing glass

Application Examples

1. Printing and Drying (except LS-1401S)

The paste for printing is prepared by adding vehicle to the powder glass and mixing them well.


The vehicle is obtained by dissolving a low molecular weight acrylic resin in terpineol at a concentration of 5%. The paste obtained is printed on ceramic parts with an 80-100 mesh stainless screen. Printing and drying are repeated in order to increase the glass thickness of the film layer.

Drying is carried out at 120°C for 10-20 minutes.

2. Pre-firing

In order to eliminate the resin in the film layer pre-firing is done in an oxidizing atmosphere such as oxygen or air. Decomposition and firing of the resin takes place most actively at 320-380°C, so gradual heating is necessary in this temperature range.

Sintering of the powder glass is also carried out.

Glass Code	T ₁ (°C)	T ₂ (°C)
LS-1401S	250	350
LS-2010	320	390
LS-3051S	310	380
LS-1301	310	400
BF-0901	350	530

Fig. 1 Pre-firing profile

3. Lead-Frame Attaching

Lead-frame attaching is carried out in the air, and maintain the attaching temperature (T) for 5 to 7 minutes. When a heater block is used, the surface temperature of the block is kept higher than the attaching temperature by 30-50°C. Soak time is 1 to 2 minutes.

Glass Code	T (°C)
LS-2010	435
LS-3051S	430
LS-1301	450

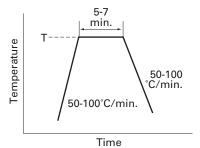


Fig. 2 L/A profile

4. Sealing

Sealing is carried out in either an air or a nitrogen atmosphere. Soak time is approximately 10 minutes and temperature is the same as lead-frame attaching temperature. Heating up rate is 50 to 100°C/min. and cool down rate is 20 to 40°C/min.

Low Temperature Sealing Glass 2

Low temperature sealing glass is a composite material made by blending matrix powder glass with a low softening temperature and specially synthesized ceramic filler powder. By changing the blending ratio and the kinds of glass and ceramics used, it is possible to change its sealing temperature and coefficient of thermal expansion.

- Composite sealing glass has a short sealing time and excellent ability to seal glass and metal.
- Devitrifiable glass can be re-fired without deformation.
- When a devitrifiable glass is heated, crystals form in the resulting melt, which then solidifies to produce a highly heat-resistant seal.

Properties

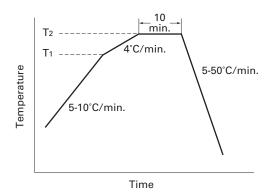
Properties/Glass Code		LS-3075	LS-3081	LS-0118	LS-0206	LS-7105	BF-0606	
Sealing temperature		°C	450	410	430	450	450	485
Coefficient of thermal expansion	30-250°C	×10 ⁻⁷ /K	36.5	74	72.5	72	85*1	73*1
Density		×10 ³ kg/m ³	6.91	6.89	7.05	6.82	6.37	6.05
Transformation point		°C	300	300	317	325	_	365
Deformation point		°C	330	320	337	353	_	393
Softening point		°C	_	365	390	410	400	450
Volume resistivity Log p	150°C	Ω·cm	10.8	12.2	11.2	13.2	10.4	12.0
Color			Black	Black	Black	Black	Black	Green
Glass type		PbO · B ₂ O ₃ (COM)* ²	PbO · B ₂ O ₃ (COM)* ²		PbO·ZnO·B ₂ O ₃ (DEV)* ³	Bi ₂ O ₃ · B ₂ O ₃ (COM)* ²		
Application			Alkali-free glass	Window glass, 50 Alloy, 426 Alloy				

 $[\]boldsymbol{*}$ 1 This figure was measured at 30 to 300°C.

Please contact us about other types of Pb-free glass.

^{* 2} COM : Composite sealing glass

^{* 3} DEV : Devitrifiable sealing glass

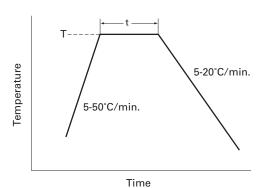

Application Examples

1. Printing and Drying

The paste for printing is prepared by adding a vehicle to the sealant and mixing them well. The vehicle is obtained by dissolving acrylic resin in terpineol at a concentration of 5%. The paste obtained is printed on the substrates with 80-100 mesh stainless screen. Drying is carried out at 120°C for 10-20 minutes.

2. Pre-firing

In order to eliminate the resin in the film layers, pre-firing is done in an oxidizing atmosphere such as oxygen or air. Decomposition and firing of resin take place most actively at 320-380°C, so gradual heating is necessary in this temperature range.



Glass Code	T ₁ (°C)	T ₂ (°C)	
LS-3075	320	380	
BF-0606	350	450	
LS-3081	320	380	
LS-0118	320	380	
LS-0206	320	400	
LS-7105	320	390	

Fig. 1 Pre-firing profile

3. Sealing

Sealing is carried out in either an air or a nitrogen atmosphere.

Glass Code	T (°C)	t (min.)
LS-3075	450	10
BF-0606	485	10
LS-3081	410	10
LS-0118	430	10
LS-0206	450	15
LS-7105	450	20

Fig. 2 Sealing profile