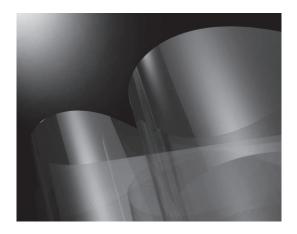
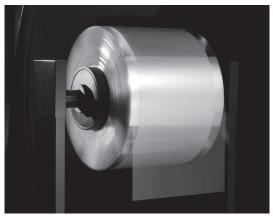
G-Leaf™

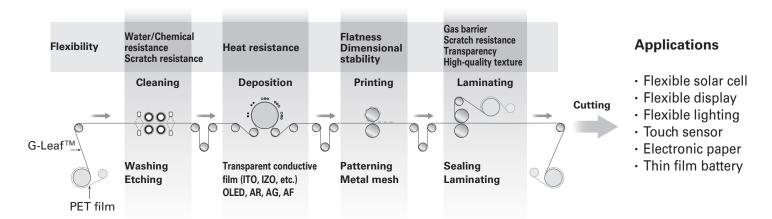



Ultra-thin glass G-Leaf™, which is under 0.2mm (200 µm) thick, is a superior material formed by overflow technology. G-Leaf™ maintains the advantageous functions and reliability of glass in a film state and can therefore be applied using the roll-to-roll process. G-Leaf™ is a next-generation material that holds excellent potential for applications such as electronics, energy-related products, medical-use products, and lighting.

Features

- Excellent properties of glass
- · Optical properties
- Weather resistance
- Heat resistance
- Gas barrier properties
- · Electrical insulation
- Chemical durability
- Properties of overflow technology
- Surface flatness
- Surface smoothness

- Features unique to thin sheet forming
- Flexibility
- Workability
- Lightweight
- Environmentally friendly glass that does not contain As or Sb



Rolled-up form

G-Leaf™ allows for the reduction of energy and environmental burdens at all stages of its production, from raw materials to delivery.

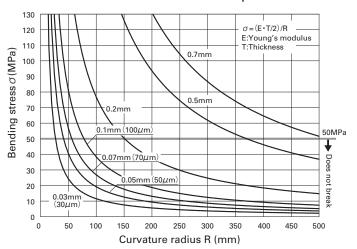
Roll-to-Roll manufacturing process for flexible devices using G-Leaf™

G-Leaf™, with both its glass features and flexibility, makes it possible to manufacture high-quality flexible devices with the high-productivity roll-to-roll process.

Thermal Properties

With its high heat resistance, low thermal expansion, and low thermal shrinkage, $G\text{-Leaf}^{\text{TM}}$ offers superior thermal dimensional stability.

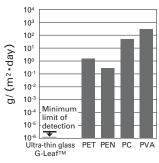
Strain point	°C	650	
Annealing point	°C	705	
Softening point	°C	940	
Coefficient of thermal expansion	30-380°C	× 10 ⁻⁷ /K	38


Mechanical Properties

G-Leaf[™] is characterized by high elasticity and high hardness.

Density	\times 10 3 kg/m 3	2.46
Young's modulus	GPa	73
Poisson's ratio		0.2
Vickers hardness	Hv	600

Flexibility


G-Leaf™ is also available in rolled-up forms.

^{*} Glass breakage depends on defects located on edges and/or surfaces of glass substrates. In the above figure, 50MPa is considered to be the boundary between "broken" and "not broken" conditions.

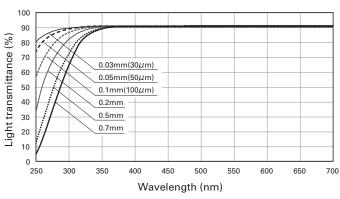
Gas Barrier Properties

Water vapor permeation rate

	10	
	10 ³	_
\subseteq	10 ²	
cm³/ (m²•day)	10¹	
2 • (100	Minimum -
Œ	10-1	limit of detection
13/	10-2	T.
СĽ	10 ⁻²	
	10-4	
	10-5	

Ultra-thin glass PET PEN PC PVA G-Leaf™

Oxygen transmittance rate


Electrical Properties

Volume resistivity Log p	350°C	Ω·cm	12.0
Dielectric constant	1MHz, 25°C		5.3
tan δ	1MHz, 25°C		0.001

Optical Properties

G-Leaf™ has high light transmittance.

Light transmittance	<i>λ</i> =550nm	%	92
Refractive index (n _d)	<i>λ</i> =587.6nm		1.52

Chemical Properties

G-Leaf™ has high chemical durability. It is an ecological material and does not contain any substances that impose burdens on the environment.

Chemical	10% HCI (80°C-60min)		No visual change
durability	63 BHF (20°C-3min)		No visual change
Alkali content		wt %	0.1 max.
As, Sb content		wt %	less than 0.1

Surface Quality (AFM Image)

Formed by overflow technology, the product has an extremely smooth and flat surface.

G-Leaf[™]
Non-polished surface formed by overflow technology

Ra = 0.2 nm

Polished surface Ra=0.5nm

Dimensions

Thickness		
Center	Tolerance	
0.2mm (200 μ m)		
0.1mm(100µm)		
0.07mm(70 μ m)	± 10%	
0.05mm(50 μ m)		
0.03mm(30 μ m)		

Shipping Form: Sheet

(mm)

Dimensions		
Standard size	Tolerance	
200×200-400×600	±0.3	

Custom sizes and thicknesses available on request.

Shipping Form: Rolled-up

Thickness, width, and length can be customized.

Laminated adhesive film with G-Leaf $^{\!\mathsf{TM}}$ is available to facilitate handling.

^{*} Both the water vapor permeation rate and oxygen transmittance rate are lower than minimum limit of detection.